Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Cluster Comput ; : 1-23, 2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-2285597

ABSTRACT

This paper proposes a multichannel deep learning approach for lung disease detection using chest X-rays. The multichannel models used in this work are EfficientNetB0, EfficientNetB1, and EfficientNetB2 pretrained models. The features from EfficientNet models are fused together. Next, the fused features are passed into more than one non-linear fully connected layer. Finally, the features passed into a stacked ensemble learning classifier for lung disease detection. The stacked ensemble learning classifier contains random forest and SVM in the first stage and logistic regression in the second stage for lung disease detection. The performance of the proposed method is studied in detail for more than one lung disease such as pneumonia, Tuberculosis (TB), and COVID-19. The performances of the proposed method for lung disease detection using chest X-rays compared with similar methods with the aim to show that the method is robust and has the capability to achieve better performances. In all the experiments on lung disease, the proposed method showed better performance and outperformed similar lung disease existing methods. This indicates that the proposed method is robust and generalizable on unseen chest X-rays data samples. To ensure that the features learnt by the proposed method is optimal, t-SNE feature visualization was shown on all three lung disease models. Overall, the proposed method has shown 98% detection accuracy for pediatric pneumonia lung disease, 99% detection accuracy for TB lung disease, and 98% detection accuracy for COVID-19 lung disease. The proposed method can be used as a tool for point-of-care diagnosis by healthcare radiologists.Journal instruction requires a city for affiliations; however, this is missing in affiliation 3. Please verify if the provided city is correct and amend if necessary.correct.

3.
IEEE Sens J ; 23(2): 898-905, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2244828

ABSTRACT

Ambient intelligence plays a crucial role in healthcare situations. It provides a certain way to deal with emergencies to provide the essential resources such as nearest hospitals and emergency stations promptly to avoid deaths. Since the outbreak of Covid-19, several artificial intelligence techniques have been used. However, situation awareness is a key aspect to handling any pandemic situation. The situation-awareness approach gives patients a routine life where they are continuously monitored by caregivers through wearable sensors and alert the practitioners in case of any patient emergency. Therefore, in this paper, we propose a situation-aware mechanism to detect Covid-19 systems early and alert the user to be self-aware regarding the situation to take precautions if the situation seems unlikely to be normal. We provide Belief-Desire-Intention intelligent reasoning mechanism for the system to analyze the situation after acquiring the data from the wearable sensors and alert the user according to their environment. We use the case study for further demonstration of our proposed framework. We model the proposed system by temporal logic and map the system illustration into a simulation tool called NetLogo to determine the results of the proposed system.

4.
Wirel Pers Commun ; 126(3): 2597-2620, 2022.
Article in English | MEDLINE | ID: covidwho-1914002

ABSTRACT

Globally, millions of people were affected by the Corona-virus disease-2019 (COVID-19) causing loads of deaths. Most COVID-19 affected people recover in a few spans of weeks. However, certain people even those with a milder variant of the disease persist in experiencing symptoms subsequent to their initial recuperation. Here, a novel Block-Chain (BC)-assisted optimized deep learning algorithm, explicitly improved dragonfly algorithm based Deep Neural Network (IDA-DNN), is proposed for detecting the different diseases of the COVID-19 patients. Initially, the input data of the COVID-19 recovered patients are gathered centered on their post symptoms and their data is amassed as a BC for rendering security to the patient's data. After that, the disease identification of the patient's data is performed with the aid of system training. The training includes '4' disparate datasets for data collection, and then, performs preprocessing, Feature Extraction (FE), Feature Reduction (FR), along with classification utilizing ID-DNN on the gathered inputted data. The IDA-DNN classifies '2' classes (presence of disease and absence of disease) for every type of data. The proposed method's outcomes are examined as well as contrasted with the other prevailing techniques to corroborate that the proposed IDA-DNN detects the COVID-19 more efficiently.

5.
International Journal of Intelligent Systems ; 2021.
Article in English | EuropePMC | ID: covidwho-1563802

ABSTRACT

Considering the coronavirus disease 2019 (COVID‐19) pandemic, the government and health sectors are incapable of making fast and reliable decisions, particularly given the various effects of decisions on different contexts or countries across multiple sectors. Therefore, leaders often seek decision support approaches to assist them in such scenarios. The most common decision support approach used in this regard is multiattribute decision‐making (MADM). MADM can assist in enforcing the most ideal decision in the best way possible when fed with the appropriate evaluation criteria and aspects. MADM also has been of great aid to practitioners during the COVID‐19 pandemic. Moreover, MADM shows resilience in mitigating consequences in health sectors and other fields. Therefore, this study aims to analyse the rise of MADM techniques in combating COVID‐19 by presenting a systematic literature review of the state‐of‐the‐art COVID‐19 applications. Articles on related topics were searched in four major databases, namely, Web of Science, IEEE Xplore, ScienceDirect, and Scopus, from the beginning of the pandemic in 2019 to April 2021. Articles were selected on the basis of the inclusion and exclusion criteria for the identified systematic review protocol, and a total of 51 articles were obtained after screening and filtering. All these articles were formed into a coherent taxonomy to describe the corresponding current standpoints in the literature. This taxonomy was drawn on the basis of four major categories, namely, medical (n = 30), social (n = 4), economic (n = 13) and technological (n = 4). Deep analysis for each category was performed in terms of several aspects, including issues and challenges encountered, contributions, data set, evaluation criteria, MADM techniques, evaluation and validation and bibliography analysis. This study emphasised the current standpoint and opportunities for MADM in the midst of the COVID‐19 pandemic and promoted additional efforts towards understanding and providing new potential future directions to fulfil the needs of this study field.

6.
J Infect Public Health ; 14(10): 1513-1559, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1500074

ABSTRACT

The problem complexity of multi-criteria decision-making (MCDM) has been raised in the distribution of coronavirus disease 2019 (COVID-19) vaccines, which required solid and robust MCDM methods. Compared with other MCDM methods, the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) have demonstrated their solidity in solving different MCDM challenges. However, the fuzzy sets used in these methods have neglected the refusal concept and limited the restrictions on their constants. To end this, considering the advantage of the T-spherical fuzzy sets (T-SFSs) in handling the uncertainty in the data and obtaining information with more degree of freedom, this study has extended FWZIC and FDOSM methods into the T-SFSs environment (called T-SFWZIC and T-SFDOSM) to be used in the distribution of COVID-19 vaccines. The methodology was formulated on the basis of decision matrix adoption and development phases. The first phase described the adopted decision matrix used in the COVID-19 vaccine distribution. The second phase presented the sequential formulation steps of T-SFWZIC used for weighting the distribution criteria followed by T-SFDOSM utilised for prioritising the vaccine recipients. Results revealed the following: (1) T-SFWZIC effectively weighted the vaccine distribution criteria based on several parameters including T = 2, T = 4, T = 6, T = 8, and T = 10. Amongst all parameters, the age criterion received the highest weight, whereas the geographic locations severity criterion has the lowest weight. (2) According to the T parameters, a considerable variance has occurred on the vaccine recipient orders, indicating that the existence of T values affected the vaccine distribution. (3) In the individual context of T-SFDOSM, no unique prioritisation was observed based on the obtained opinions of each expert. (4) The group context of T-SFDOSM used in the prioritisation of vaccine recipients was considered the final distribution result as it unified the differences found in an individual context. The evaluation was performed based on systematic ranking assessment and sensitivity analysis. This evaluation showed that the prioritisation results based on each T parameter were subject to a systematic ranking that is supported by high correlation results over all discussed scenarios of changing criteria weights values.


Subject(s)
COVID-19 Vaccines , COVID-19 , Decision Making , Fuzzy Logic , Humans , SARS-CoV-2
7.
Comput Stand Interfaces ; 80: 103572, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1370486

ABSTRACT

Owing to the limitations of Pythagorean fuzzy and intuitionistic fuzzy sets, scientists have developed a distinct and successive fuzzy set called the q-rung orthopair fuzzy set (q-ROFS), which eliminates restrictions encountered by decision-makers in multicriteria decision making (MCDM) methods and facilitates the representation of complex uncertain information in real-world circumstances. Given its advantages and flexibility, this study has extended two considerable MCDM methods the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM). The methodology formulated had two phases. The first phase 'development' presented the sequential steps of each method thoroughly.The q-ROFWZIC method was formulated and used in determining the weights of evaluation criteria and then integrated into the q-ROFDOSM for the prioritisation of alternatives on the basis of the weighted criteria. In the second phase, a case study regarding the MCDM problem of coronavirus disease 2019 (COVID-19) vaccine distribution was performed. The purpose was to provide fair allocation of COVID-19 vaccine doses. A decision matrix based on an intersection of 'recipients list' and 'COVID-19 distribution criteria' was adopted. The proposed methods were evaluated according to systematic ranking assessment and sensitivity analysis, which revealed that the ranking was subject to a systematic ranking that is supported by high correlation results over different scenarios with variations in the weights of criteria.

8.
J Adv Res ; 37: 147-168, 2022 03.
Article in English | MEDLINE | ID: covidwho-1364192

ABSTRACT

Introduction: The vaccine distribution for the COVID-19 is a multicriteria decision-making (MCDM) problem based on three issues, namely, identification of different distribution criteria, importance criteria and data variation. Thus, the Pythagorean fuzzy decision by opinion score method (PFDOSM) for prioritising vaccine recipients is the correct approach because it utilises the most powerful MCDM ranking method. However, PFDOSM weighs the criteria values of each alternative implicitly, which is limited to explicitly weighting each criterion. In view of solving this theoretical issue, the fuzzy-weighted zero-inconsistency (FWZIC) can be used as a powerful weighting MCDM method to provide explicit weights for a criteria set with zero inconstancy. However, FWZIC is based on the triangular fuzzy number that is limited in solving the vagueness related to the aforementioned theoretical issues. Objectives: This research presents a novel homogeneous Pythagorean fuzzy framework for distributing the COVID-19 vaccine dose by integrating a new formulation of the PFWZIC and PFDOSM methods. Methods: The methodology is divided into two phases. Firstly, an augmented dataset was generated that included 300 recipients based on five COVID-19 vaccine distribution criteria (i.e., vaccine recipient memberships, chronic disease conditions, age, geographic location severity and disabilities). Then, a decision matrix was constructed on the basis of an intersection of the 'recipients list' and 'COVID-19 distribution criteria'. Then, the MCDM methods were integrated. An extended PFWZIC was developed, followed by the development of PFDOSM. Results: (1) PFWZIC effectively weighted the vaccine distribution criteria. (2) The PFDOSM-based group prioritisation was considered in the final distribution result. (3) The prioritisation ranks of the vaccine recipients were subject to a systematic ranking that is supported by high correlation results over nine scenarios of the changing criteria weights values. Conclusion: The findings of this study are expected to ensuring equitable protection against COVID-19 and thus help accelerate vaccine progress worldwide.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Decision Making , Fuzzy Logic , Humans
9.
Appl Soft Comput ; 111: 107675, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1306863

ABSTRACT

A novel coronavirus (COVID-19) has globally attracted attention as a severe respiratory condition. The epidemic has been first tracked in Wuhan, China, and has progressively been expanded in the entire world. The growing expansion of COVID-19 around the globe has made X-ray images crucial for accelerated diagnostics. Therefore, an effective computerized system must be established as a matter of urgency, to facilitate health care professionals in recognizing X-ray images from COVID-19 patients. In this work, we design a novel artificial intelligent-based automated X-ray image analysis framework based on an ensemble of deep optimized convolutional neural networks (CNNs) in order to distinguish coronavirus patients from non-patients. By developing a modified version of gaining-sharing knowledge (GSK) optimization algorithm using the Opposition-based learning (OBL) and Cauchy mutation operators, the architectures of the deployed deep CNNs are optimized automatically without performing the general trial and error procedures. After obtaining the optimized CNNs, it is also very critical to identify how to decrease the number of ensemble deep CNN classifiers to ensure the classification effectiveness. To this end, a selective ensemble approach is proposed for COVID-19 X-ray based image classification using a deep Q network that combines reinforcement learning (RL) with the optimized CNNs. This approach increases the model performance in particular and therefore decreases the ensemble size of classifiers. The experimental results show that the proposed deep RL optimized ensemble approach has an excellent performance over two popular X-ray image based COVID-19 datasets. Our proposed advanced algorithm can accurately identify the COVID-19 patients from the normal individuals with a significant accuracy of 0.991441, precision of 0.993568, recall (sensitivity) of 0.981445, F-measure of 0.989666 and AUC of 0.990337 for Kaggle dataset as well as an excellent accuracy of 0.987742, precision of 0.984334, recall (sensitivity) of 0.989123, F-measure of 0.984939 and AUC of 0.988466 for Mendely dataset.

10.
Sustain Cities Soc ; 65: 102589, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-908868

ABSTRACT

Since December 2019, the coronavirus disease (COVID-19) outbreak has caused many death cases and affected all sectors of human life. With gradual progression of time, COVID-19 was declared by the world health organization (WHO) as an outbreak, which has imposed a heavy burden on almost all countries, especially ones with weaker health systems and ones with slow responses. In the field of healthcare, deep learning has been implemented in many applications, e.g., diabetic retinopathy detection, lung nodule classification, fetal localization, and thyroid diagnosis. Numerous sources of medical images (e.g., X-ray, CT, and MRI) make deep learning a great technique to combat the COVID-19 outbreak. Motivated by this fact, a large number of research works have been proposed and developed for the initial months of 2020. In this paper, we first focus on summarizing the state-of-the-art research works related to deep learning applications for COVID-19 medical image processing. Then, we provide an overview of deep learning and its applications to healthcare found in the last decade. Next, three use cases in China, Korea, and Canada are also presented to show deep learning applications for COVID-19 medical image processing. Finally, we discuss several challenges and issues related to deep learning implementations for COVID-19 medical image processing, which are expected to drive further studies in controlling the outbreak and controlling the crisis, which results in smart healthy cities.

SELECTION OF CITATIONS
SEARCH DETAIL